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Abstract
The effect of well coupling on effective masses for InGaAsN based
heterostructures is numerically analysed. The analysis is based on the 10 × 10
Luttinger–Kohn Hamiltonian which couples valence, conduction and nitrogen
bands. Our results show that by adjusting the nitrogen composition and/or the
barrier width, effective masses can be effectively modified.

1. Introduction

InGaAsN based structures have been studied extensively in recent years as a candidate
for quantum well (QW) based semiconductor lasers emitting light at a wavelength of
1.3 μm [1]. Recently there have been several theoretical analyses published [2–4] on the
material gain, differential gain and linewidth enhancement factor for GaInNAs/GaAs single
quantum wells based on the free-carrier theory. In our previous work we explored the effect of
nitrogen composition on peak differential gain and transparency concentration. The linewidth
enhancement factor was found to have similar values than those of the conventional material
InGaAsP/InP, which is encouraging for the use of InGaAsN as the active material in a high
speed emitter.

It is known that coupling between quantum wells significantly affects the operation of
multiple quantum well (MQW) devices. Theoretical analysis of coupling effects on such
properties as optical gain, differential gain and electric field induced refractive index have been
performed for GaAs/AlGaAs based devices [5–8]. It was shown that well coupling substantially
shifts the spectral gain peak and band mixing reduces the gain peak. Differential gain for
narrow quantum wells is enhanced for barriers within the range of 20–50 Å, depending on
carrier concentration.

Another key property is the effective masses of carriers close to band-edges. Theoretical
studies of the electron masses in Inx Ga1−x As1−yNy /GaAs single quantum wells using the
10 × 10 Hamiltonian have been reported and compared with experimentally determined
effective masses [9]. Numerical analysis of the effective masses of holes in InGaAsN single
quantum well structures with self-consistent effects were reported recently by us [3]. Related
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theoretical and experimental studies of GaAs1−yNy/GaAs quantum well systems have also been
performed [10, 11].

In the present paper we report on first findings of the effective masses of carriers of
two coupled wells fabricated from InGaAsN. We follow the procedures described in recent
papers [3, 9] and perform numerical simulations for a range of separation barrier widths and
nitrogen compositions. In section 2 we describe our theory and in section 3 we present our
results.

2. Theory

2.1. Band structure

To calculate the electron and hole band structures of the quantum well, we use a plane-wave
expansion method which assumes a periodic structure of widely separated quantum wells [12].
The wavefunction of each electron or hole is described by a linear combination of bulk states

ψ(r) = 1√
S

∑

n,α

Fn,α(z, k p)e
ikp x⊥ uα(r)

where uα(r) is the Bloch function for each subband and Fn,α(z, k p) is an envelope function for
eigenenergy En. The envelope function equation is given by

[H (z, k p)]α[Fn,α(z, k p)] = En(k p)[Fn,α(z, k p)].
Here square brackets denote the vector in subband α and the Hamiltonian H is described below.

The construction of the Hamiltonian is based on the method presented by Tomić et al
[13], where the effect of adding nitrogen to the structure is modelled perturbatively because
the Inx Ga1−xAs1−yNy layers have small values of y. An 8 × 8 Luttinger–Kohn (LK)
method (coupled model of conduction, heavy, light and split-off hole bands) is used with the
Inx Ga1−x As1−yNy layers replaced by In1−x Gax As (known as the host structure). When a small
amount of nitrogen is introduced, the 8 × 8 Hamiltonian is expanded to a 10 × 10 Hamiltonian
to account for coupling to the ‘nitrogen band’ (given by the first and sixth rows and columns
in the Hamiltonian below). Additionally, some of the terms from the 8 × 8 contribution are
modified due to the inclusion of nitrogen. The resulting 10 × 10 Hamiltonian is [3, 13–15]

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

EN VNC 0 0 0 0 0 0 0 0
EC −√

3T+
√

2U −U 0 0 0 −T− −√
2T−

EHH

√
2S −S 0 0 0 −R −√

2R
ELH Q 0 T ∗+ R 0

√
3S

ESO 0
√

2T ∗+
√

2R −√
3S 0

EN VNC 0 0 0
EC −√

3T−
√

2U −U
EHH

√
2S∗ −S∗

ELH Q
ESO

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

where the subscripts N, C, HH, LH and SO stand for nitrogen, conduction, heavy-hole, light-
hole and split-off bands, respectively. We do not show the lower triangle as this matrix is
Hermitian. The diagonal terms of the 8 × 8 component of this Hamiltonian are [13, 16]

EC = EC0 + h̄2

2m0
sC(k

2
‖ + k2

z )− (α − κ)y

EHH = EHH0 − h̄2

2m0
((γ1 + γ2)k

2
‖ + (γ1 − 2γ2)k

2
z )+ κy

2
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Table 1. Parameters used in the calculations.

β 1.675 eV
γ 3.5 eV
κ 3.5 eV
α 1.75 eV

ELH = ELH0 − h̄2

2m0
((γ1 − γ2)k

2
‖ + (γ1 + 2γ2)k

2
z )+ κy

ESO = ESO0 − h̄2

2m0
γ1(k

2
‖ + k2

z )+ κy.

Here the first terms on the right-hand side of these equations represent the band-edge energies
of the host system, which are found using a band-offset model that incorporates strain [13, 16].
The last terms on the right-hand side of these equations represent the modification due to the
nitrogen band, y is the fraction of N in the structure, α and κ are parameters which are chosen
to be 1.75 and 3.5, respectively [13]. The term sC = 1/m∗

C − (EP/3)[2/Eg + 1/(Eg +�SO)]
is used in place of 1/m∗

C and the Luttinger coefficients are replaced by γ1 → γ1 − EP/(3Eh
g),

γ2,3 → γ2,3 − EP/(6Eh
g) in the 8 × 8 model (EP and Eh

g are the optical matrix parameter and
bandgap of the host material, respectively). The other 8 × 8 terms are standard [16]

T± = 1√
6

P(kx ± iky)

U = 1√
3

Pkz

S =
√

3

2

h̄2

m0
γ3kz(kx − iky)

R =
√

3

2

h̄2

2m0
[(γ2 + γ3)(kx − iky)

2 − (γ3 − γ2)(kx + iky)
2]

Q = − h̄2

m0

(
1√
2
γ2k2

‖ − √
2γ2k2

z

)
− √

2ηax

with P being the Kane matrix element for the conduction band and the last term in the
expression for Q is the shear strain component [13, 16]. The N band components of the
Hamiltonian are

EN = EN0 + δEhy
N − (γ − κ)y (2)

where EN0 is the band-edge of the N band, including strain (which is just the hydrostatic
component). Table III of Choulis et al [17] gives material data for InN and GaN systems.
The difference between the unstrained conduction and N energy bands of 0.485 eV has been
taken from Tomic et al [13]. VNC is the only N band coupling term. It describes the interaction
between the N and C bands and is given by

VNC = −β√
y. (3)

Values for γ and β are 3, 5 and 1.675, respectively [13]. The set of parameters used in the
present paper is the same as the parameters used previously when analysing properties of a
single quantum well [3, 13] (see table 1 for details).

Calculating the band structures of Inx Ga1−x As1−yNy /GaAs is a two-step process:

(1) Select parameters of ‘host structure’ Inx Ga1−x As/GaAs where we use standard ternary
interpolation methods for the parameters of InxGa1−xAs.
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(2) Add perturbative corrections to these due to the fraction y of N in the structure.

2.2. Self-consistent procedure

The self-consistent method is similar to the one which we used before [18] which consists
of a self-consistent solution of the Poisson’s equation with the matrix Schrödinger equation
described by the Hamiltonian (1). The Poisson equation is

d

dz

[
ε(z)

d

dz
φ(z)

]
= −e[ρHH(z)+ ρLH(z)− ρC(z)] (4)

where e is the fundamental charge, ε(z) is the position-dependent permittivity, ρC(z), ρHH(z)
and ρLH(z) are the position-dependent electron and hole band density distributions,
respectively. The function φ(z) is the electrostatic potential. The density distributions are [18]

ρα(z) = kBT

π h̄2

{
∑

n

m∗
α|Fp

n,α(z)|2 ln

[
1 + exp

(
E f
α − Ep

n,α

kBT

)]}
. (5)

The symbol α represents the conduction (C), heavy-hole (HH) and light-hole (LH) bands and
n is an index over the subbands. E f

C is the conduction band Fermi level and E f
HH = E f

LH is
the valence band Fermi level. Their values are determined by the standard methods [16]. The
symbol kB is the Boltzmann constant, T is temperature and m∗

α is the average effective mass for
the particular band which is as approximated as the effective mass in the well since most of the
carriers are confined there. Here, Fp

n,α(z) and Ep
n,α are the respective envelope eigenfunctions

and eigenvalues of the various subbands in the parabolic approximation at the band-edge.

2.3. In-plane effective mass calculations

To evaluate the in-plane effective mass for the holes we look for the best fit of parabolic
dispersion curves to the LK dispersion curves, with effective mass as the fitting parameter.
We use an iterative routine which guesses at effective masses, compares the resulting parabolic
dispersion using this effective mass near the band-edge to the 10 × 10 LK dispersion results
using a least squares method and then refines this guess to the desired accuracy. We took the
k = 0 energies found from the 10 × 10 model as the k = 0 energies of a parabolic model

Ep
n,α(k) = E10×10

n (0)+ h̄2

2m∗
n,α

k2 (6)

where n denotes the nth hole band (in order energetically). The fitting parameter is then the
band’s effective mass m∗

n,α .
In addition to finding the effective mass of each hole subband, we also classify each hole

type (α) as either heavy-hole or light-hole. The procedure for this classification is as follows.
Each subband wavefunction is an eigenfunction of Hamiltonian (1) and will therefore have
contributions of all the N, C, HH, LH and SO bands. However, for the hole energy levels
considered, the dominant contributions will only be from the LH and HH bands. If the subband
under consideration, at the band-edge, has a larger LH contribution than HH it is classified to
be of the LH type, otherwise it is classified as the HH type. This classification should only be
taken as a rough approximation, as band mixing means we will not have pure LH or HH states.
The farther we are away from the band-edge, the greater the band-mixing. Also, only the 4 × 4
LK approximation gives pure subband states at the band-edge. For 6 × 6 and greater there will
be band-mixing even at the band-edge.
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Figure 1. The heterostructure potential versus position for a separation barrier width of 2 nm and
an average carrier density in the well equal to 4 × 1018 cm−3.

Table 2. Heterostructure used in the calculations.

Thickness Material Description

‘Infinite’ GaAs Cladding
40 nm In0.05Ga0.95As0.985N0.015 Barrier
7 nm In0.38Ga0.62As1−x Nx Well
1 → 4 nm In0.05Ga0.95As0.985N0.015 Barrier
7 nm In0.38Ga0.62As1−x Nx Well
40 nm In0.05Ga0.95As0.985N0.015 Barrier
‘Infinite’ GaAs Substrate

3. Results

We performed our analysis for a double quantum well system as described in table 2. The
structure consists of two identical quantum well separated by a barrier. We conducted our
analysis for barrier widths of 1, 2, 3 and 4 nm. We also varied the nitrogen composition of
both wells and considered values of nitrogen equal to 0.5, 1.0, 1.5, 2.0 and 2.5%. The wells
are surrounded by 40 nm wide barriers consisting of In0.05Ga0.95As0.985N0.015. Outside of the
structure there are GaAs cladding and substrate layers.

In figure 1 we show heterostructure potential determined in a self-consistent procedure for
a 2 nm separation barrier and the average carrier density of 4 × 1018 cm−3.

In figures 2 and 3 we plot the band dispersion for the first six and eight subbands of
the conduction and valence bands, respectively, for a 3 nm separation barrier and well N
composition x = 1.5%. We see that since this is a double well system, we have close
to double degeneracy for the dispersions (which gets closer to degeneracy the wider the
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Figure 2. Band structure of electrons. Nitrogen
composition 1.5%. Separation barrier equal to
3 nm.

Figure 3. Band structure of holes. Nitrogen
composition 1.5%. Separation barrier equal to
3 nm.

separation barrier becomes). We also label on figure 3 the subband character of each dispersion
(LH or HH).

In figure 4 we plot the effective mass for the first, third, fifth and seventh subbands versus
separation barrier width and well N composition of 1.5%. We choose these bands because of
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Figure 4. Effective masses versus barrier
separation. nitrogen composition 1.5%.

Figure 5. Effective masses versus nitrogen
composition. Separation barrier equal to 3 nm.

the close double degeneracy of the levels. Subbands 1, 3 and 5 have a HH characteristic while
subband 7 is closer to LH.

In figure 5 we plot the effective mass for the first, third, fifth and seventh subbands versus
N composition for a barrier width of 3 nm. Again, subbands 1, 3 and 5 have a HH characteristic.
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However, subband 7 is closer to HH when N < 1.5% and LH otherwise. The seventh subband
does not display a gradual monatomic response. Subband level 7 is greatly affected by the N
composition because an examination of figures 3 and 1 shows it to be energetically close to
the hole barrier’s energy and N affects the well depth significantly. This level is intermediate
between being free and confined.

4. Conclusions

Hole effective masses were calculated numerically for a double quantum well system in a
large range of material compositions and barrier widths between quantum wells. A systematic
overview has been provided. Results show that by adjusting strain and barrier width effective
masses can be effectively modified. This will enable one to engineer quantum well structures
for specific device requirements.
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